48 research outputs found

    Aridity-driven shift in biodiversity–soil multifunctionality relationships

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-01-07, accepted 2021-08-12, registration 2021-08-25, pub-electronic 2021-09-09, online 2021-09-09, collection 2021-12Publication status: PublishedFunder: National Natural Science Foundation of China (National Science Foundation of China); doi: https://doi.org/10.13039/501100001809; Grant(s): 31770430Abstract: Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification

    Long intergenic non-coding RNA 1939 eliminates proliferation and migration of human renal cell carcinoma (RCC) cells by down-regulation of miR-154

    No full text
    AbstractRenal carcinoma (RCC) is widely accepted as a malignant tumour of urinary system. Long intergenic non-coding RNA 1939 (LINC01939) is a novel lncRNA which was found to be down-regulated in RCC. Thus, we set out to explore the effect and regulation mechanism of LINC01939 in RCC. LINC01939 and miR-154 in RCC tissues and cell lines were detected using qRT-PCR assay. To examine cellular viability of ACHN and CAKI-1 cells, cell counting kit-8 (CCK-8) assay was exploited here. Flow cytometric analysis was conducted to examine apoptosis. Cell mobility was valued through wound healing assays. Western blotting was applied for examination of proteins related to proliferation, apoptosis, migration and Wnt/β-catenin/Notch. LINC01939 was down-regulated in RCC tissues. LINC01939 overexpression impeded proliferation and migration, and induced apoptosis. Further study found that the overexpression of LINC01939 strongly suppressed miR-154 expression. Then, the inhibiting effect of overexpressed LINC01939 on proliferation and mobility and the promoting role of LINC01939 in apoptosis were abolished by the combination of miR-154 mimic. Finally, we found that overexpressed LINC01939 inactivated Wnt/β-catenin and Notch through suppressing miR-154. Up-regulation of LINC01939 inhibited proliferation and migration of RCC cells by down-regulating miR-154

    Differentiation of prostate cancer lesions in the Transition Zone by diffusion-weighted MRI

    No full text
    Objective: To differentiate prostate cancer lesions in transition zone by diffusion-weighted-MRI (DW-MRI). Methods: Data from a total of 63 patients who underwent preoperative DWI (b of 0â1000 s/mm2) were prospectively collected and processed by a monoexponential (DWI) model and compared with a biexponential (IVIM) model for quantitation of apparent diffusion coefficients (ADCs), perfusion fraction f, diffusivity D and pseudo-diffusivity D*. Histogram analyses were performed by outlining entire-tumor regions of interest (ROIs). These parameters (separately and combined in a logistic regression model) were used to differentiate lesions depending on histopathological analysis of Magnetic Resonance/transrectal Ultrasound (MR/TRUS) fusion-guided biopsy. The diagnostic ability of differentiate the PCa from BHP in TZ was analyzed by ROC regression. Histogram analysis of quantitative parameters and Gleason score were assessed with Spearman correlation. Results: Thirty (30 foci) cases of PCa in PZ and 33 (36 foci) cases of BPH were confirmed by pathology. Mean ADC, median ADC, 10th percentile ADC, 90th percentile ADC, kurtosis and skewness of ADC and mean D values, median D and 90th percentile D differed significantly between PCa and BHP in TZ. The highest classification accuracy was achieved by the mean ADC (0.841) and mean D (0.809). A logistic regression model based on mean ADC and mean D led to an AUC of 0.873, however, the difference is not significant. There were 7 Gleason 6 areas, 9 Gleason 7 areas, 8 Gleason 8 areas, 5 Gleason 9 areas and 2 Gleason 10 areas detected from the 31 prostate cancer areas, the mean Gleason value was(7.5 ± 1.2). The mean ADC and mean D had correlation with Gleason score(r = â0.522 and r = â0.407 respectively, P < 0.05). Conclusion: The diagnosis efficiency of IVIM parameters was not superior to ADC in the diagnosis of PCa in TZ. Moreover, the combination of mean ADC and mean D did not perform better than the parameters alone significantly; It is feasible to stratify the pathological grade of prostate cancer by mean ADC. Keywords: Prostate cancer, Prostate biopsy, DWI, IVIM, MR/TRUS, Transition zon

    Organic Optoelectronic Devices Based on Through-Space Interaction

    No full text
    Through-space interaction (TSI), including through-space conjugation (TSC) and through-space charge transfer (TSCT), has emerged as a promising strategy for designing functional materials and constructing superior optoelectronic devices. Because of the multichannel charge transport and structural flexibility, TSI-based devices often exhibit high-performance optoelectronic properties, such as excellent photoluminescence, high charge carrier mobility, and outstanding device efficiency. In this review, the principles and characteristics of TSI are briefly introduced. Then we mainly focused on the recent progress of optoelectronic device applications based on materials with TSC and TSCT. Various advanced optoelectronic devices, including organic fluorescence film sensors, organic light-emitting diodes, single-molecule junctions, and photoswitches are discussed in detail and possible breakthroughs are proposed for future molecular design and efficiency enhancement

    Different expression of B7-H3 in the caput, corpus, and cauda of the epididymis in mouse

    No full text
    Abstract Background B7-H3, a member of the B7 family of the Ig superfamily of proteins, has been detected in the epididymis, which is a storage organ related to sperm maturation. However, the characteristics of its expression in different regions of the epididymis remain unknown. Our aim was to investigate the expression of B7-H3 in the caput, corpus, and cauda of the epididymis. Methods We extracted epididymis specimens from adult male C57BL/6 mice. The expression of B7-H3 was then measured with immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and western blotting. Results B7-H3 protein was predominantly detected on the membrane and in the cytoplasm of the principal cells in the epididymis. Moreover, the level of B7-H3 in the corpus of the mouse epididymis was significantly higher than that in the caput (p  0.05). Conclusions The caput, corpus, and cauda of the mouse epididymis all expressed B7-H3 protein. However, the levels of B7-H3 were different in the three regions of the epididymis

    Molecular Engineering for Boosting AIE-active Free Radical Photogenerator and Its High-performance in Hypoxia via Photodynamic Therapy

    No full text
    Serious hypoxia in solid tumor as well as vicious aggregation-caused fluorescence quenching (ACQ) of conventional photosensitizers (PSs) limit the progress of the fluorescence imaging-guided photodynamic (PDT) although it has obvious advantages in precise spatial-temporal control and noninvasive treatment. The photosensitizers featuring Type I reactive oxygen species (ROS) based on free radical and novel aggregation-induced emission (AIE) characteristic (AIE-PSs) could offer precious opportunity to resolve above problems, but there was rare feasible molecular engineering in previous reports. Herein, we proposed that the strategy of fabricating stronger intermolecular charge transfer (ICT) effect in electron-rich anion-Ï€+ AIE-active luminogens (AIEgens) aimed to help suppressing nonradiative internal conversion (IC) as well as promote radiative and intersystem crossing (ISC) processes for boosting more free radical generation. Systematic and detailed experimental and theoretical calculations proved our ideas when the electron-donating abilities enhanced in collaborative donors, and the AIE-PSs exhibited higher performance in near-infrared red (NIR) fluorescence image-guided cancer PDT in vitro/vivo. This work would become an important reference to the design of AIE-active free radical generators for overcoming ACQ effect and tumor hypoxia in future PDT. </div

    Insights into the Allosteric Effect of SENP1 Q597A Mutation on the Hydrolytic Reaction of SUMO1 via an Integrated Computational Study

    No full text
    Small ubiquitin-related modifier (SUMO)-specific protease 1 (SENP1) is a cysteine protease that catalyzes the cleavage of the C-terminus of SUMO1 for the processing of SUMO precursors and deSUMOylation of target proteins. SENP1 is considered to be a promising target for the treatment of hepatocellular carcinoma (HCC) and prostate cancer. SENP1 Gln597 is located at the unstructured loop connecting the helices &alpha;4 to &alpha;5. The Q597A mutation of SENP1 allosterically disrupts the hydrolytic reaction of SUMO1 through an unknown mechanism. Here, extensive multiple replicates of microsecond molecular dynamics (MD) simulations, coupled with principal component analysis, dynamic cross-correlation analysis, community network analysis, and binding free energy calculations, were performed to elucidate the detailed mechanism. Our MD simulations showed that the Q597A mutation induced marked dynamic conformational changes in SENP1, especially in the unstructured loop connecting the helices &alpha;4 to &alpha;5 which the mutation site occupies. Moreover, the Q597A mutation caused conformational changes to catalytic Cys603 and His533 at the active site, which might impair the catalytic activity of SENP1 in processing SUMO1. Moreover, binding free energy calculations revealed that the Q597A mutation had a minor effect on the binding affinity of SUMO1 to SENP1. Together, these results may broaden our understanding of the allosteric modulation of the SENP1&minus;SUMO1 complex
    corecore